Finite Correspondence of Spectra in Noetherian Ring Extensions
نویسندگان
چکیده
Let R <-* S be an embedding of associative noetherian rings such that 5 is finitely generated as a right Ä-module. There is a correspondence from the prime spectrum of S to the prime spectrum of R obtained by associating to a given prime ideal P of S the prime ideals of R minimal over P n R . The prime and primitive ideal theories for several specific noncommutative noetherian rings, including group algebras, PI algebras, and enveloping algebras, depend on understanding instances of this correspondence. We prove that the correspondence has finite fibers for a class of noetherian ring extensions that unites these examples.
منابع مشابه
The Auslander-Reiten Conjecture for Group Rings
This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...
متن کاملNoncommutative Images of Commutative Spectra
We initiate a unified, axiomatic study of noncommutative algebras R whose prime spectra are, in a natural way, finite unions of commutative noetherian spectra. Our results illustrate how these commutative spectra can be functorially “sewn together” to form SpecR. In particular, we construct a bimodule-determined functor ModZ → ModR, for a suitable commutative noetherian ring Z, from which there...
متن کاملAdic Approximation of Complexes, and Multiplicities
In [2, Section 1.6] Peskine and Szpiro prove a theorem on adic approximations of finite free resolutions over local rings which, together with M. Artin's Approximation Theorem [1], allows them to "descend" modules of finite projective dimension over the completions of certain local rings to modules of finite projective dimension over finite etale extensions of those rings. In this note we will ...
متن کاملON COMMUTATIVE GELFAND RINGS
A ring is called a Gelfand ring (pm ring ) if each prime ideal is contained in a unique maximal ideal. For a Gelfand ring R with Jacobson radical zero, we show that the following are equivalent: (1) R is Artinian; (2) R is Noetherian; (3) R has a finite Goldie dimension; (4) Every maximal ideal is generated by an idempotent; (5) Max (R) is finite. We also give the following resu1ts:an ideal...
متن کاملOn co-Noetherian dimension of rings
We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...
متن کامل